
ROS 2 for RoboCup
MarcusM. Scheunemann and Sander G. van Dijk

University of Hertfordshire, AL10 9AB, UK

There has always been much motivation for sharing code and solutions among teams in the RoboCup community. Yet the transfer of code between teams was usually
complicated due to a huge variety of used frameworks and their differences in processing sensory information. The RoboCup@Home league has tackled this by transitioning
to ROS as a common framework. In contrast, other leagues, such as those using humanoid robots, are reluctant to use ROS, as in those leagues real-time processing
and low-computational complexity is crucial. However, ROS 2 now offers built-in support for real-time processing and promises to be suitable for embedded systems and
multi-robot systems. It also offers the possibility to compose a set of nodes needed to run a robot into a single process. This, as we will show, reduces communication
overhead and allows to have one single binary, which is pertinent to competitions such as the 3D-Simulation League. Although ROS 2 has not yet been announced to be
production ready, we started the process to develop ROS 2 packages for using it with humanoid robots (real and simulated). The strong support from large entities from
the industry, such as Intel and Amazon, and the benchmarks shown here, indicate that ROS 2 is a promising candidate for a common framework.

Benefits over ROS 1

I Built-in support for real-time systems, as it sits on top of the
Data Distribution Service (DDS) standard.

I Support for defining the 'Quality of Service' of topics. This
allows one to make a range of trade-offs between strong
reliability and 'best effort' policies, to deal with lossy
communication.

I Nodes can be run in individual executables, or composed,
using a variety of executors. In ROS 1, one has to maintain
'nodelet' versions of all nodes to make this possible.

I No need to run the ROS 1 roscore instance and maintain
environment variables to make it and nodes reachable; with
DDS, nodes discover each other through a network
automatically.

I Communication between nodes can be strictly restricted by
placing them in different 'domains'.

ROS 2 and RoboCup Contributions

I We have developed a range of general and RoboCup specific
packages for ROS 2, including:
. USB (V4L2) camera driver
. Driver for ROBOTIS CM-730 sub-controller and Dynamixel
motors

. IMU fusion filter

. Humanoid league Game Controller interface

. 3D simulation league suite
I Open sourced at: https://gitlab.com/boldhearts

Real Humanoid Robot

Figure: A scene with a robot looking at a ball (top). The lower image depicts a
screenshot of RViz2. It shows the camera image feed retrieved with our USB
camera driver (left). The CM-730 package publishes joint states,
accelerometer and gyro information for building the robot model and
compute its orientation with our IMU fusion package (both right). The robot
model is built from a URDFmodel and standard ROS 2 joint state messages.

Simulated Humanoid Robot

Figure: Depicted is a scene from RCSSServer3D used in the 3D Simulation
League (left, using RoboViz). Our package translates the servo information
into standard ROS messages and publishes the topic /joint_state. Also, the
simulated gyroscope and accelerometer information are published. Our IMU
fusion package subscribes to the messages and computes the robot's
orientation, exactly as for the real robot above. The interface package allows
for using ROS 2 within the context of the 3D Simulation League.

Benchmark Stand-Alone versus Composed Nodes

0 50 100 150 200 250 300
Processing time (ms)

Sta
nd

-al
on

e

Com
po

sed

(no
-IP

C)

Com
po

sed
(IP

C)

Case 1: Simple Node Graph

Figure: Distributions of time measured from image capture by camera node
until end of processing a Sobel on the full image by processing node. Both
nodes either run as stand-alone executables or run composed in a single
executable, the latter with Intra-Process Communication (IPC) disabled and
enabled. Each plot shows the density (top), a boxplot (middle), and individual
data points (bottom). 10.000 samples are measured in each case.

0 50 100 150 200 250 300
Processing time (ms)

Sta
nd

-al
on

e

Com
po

sed

(no
-IP

C)

Com
po

sed
(IP

C)

Case 2: Extended Node Graph

Figure: Image processing times as above, but with the robot system
extended with other necessary nodes and topics like /joint_states and
/imu/data, for a total of 7 nodes running at a time.

https://robocup.herts.ac.uk marcus@mms.ai / sgvandijk@gmail.com

https://gitlab.com/boldhearts

